Tensor and Matrix order
Tensor Notation
All symmetric tensors in IMPETUS Solver uses an alternative notation of the Voigt notation.
\(
\begin{bmatrix}
\sigma_{1} & \sigma_{6} & \sigma_{5} \\
& \sigma_{2} & \sigma_{4} \\
& & \sigma_{3}
\end{bmatrix}
\)
Traditional voigt notation: 11, 22, 33, 23, 13, 12.
\(
\begin{bmatrix}
\sigma_{1} & \sigma_{4} & \sigma_{6} \\
& \sigma_{2} & \sigma_{5} \\
& & \sigma_{3}
\end{bmatrix}
\)
Our definition is: 11, 22, 33, 12, 23, 13.
Matrix access order
Matrices are stored in column major order.
\(
\begin{bmatrix}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{bmatrix}
\)
The order of the matrix is: 11, 21, 31, 12, 22, 32, 13, 23, 33